
1

© 2002 IBM Corporation

The IBM High Performance Computing Toolkit

I-Hsin Chung
IBM T.J. Watson Research Center
ihchung@us.ibm.com

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation2

IBM HPC Toolkit Highlights:

• A common application performance analysis environment across all IBM HPC
servers

• Common framework for performance analysis of communication, memory,
CPU, shared-memory, I/O

• A flexible framework in which new analysis tools can be easily plugged in

• Operate on the binary and yet provide reports in terms of source-level symbols

• Full source code traceback capability

• Dynamically activate/deactivate data collection and change what information
to collect

• Query and “what-if” capabilities

• Support automation of the performance tuning process

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation3

OLD vs NEW HPC Toolkit (PERCS/HPCS Initiative)

HPM MPI / SHMEM OpenMP

PeekPerf GUI

“OLD”: A Collection of tools unified by a GUI for data analysis

Memory

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation4

Disadvantages:

• Lack of standard in the instrumentation: source code instrumentation (HPM),
DPCL instrumentation (OpenMP), binary instrumentation (Memory)

• Source code modifications and recompilations often needed

• Lack of standard in traceback mechanism

• No dynamic capabilities

• Not easily extensible

• No support for iterative tuning

• Tuning process difficult to automate

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation5

Binary Application

pSigma
Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler
I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

Binary instrumentation

Measurement Specification

Execution

IBM High Performance Computing Toolkit (HPCS)

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation6

Structure of the New HPC toolkit

pSigma

Binary Application

PeekPerf GUI

Communication Profiler

CPU Profiler

Memory Profiler

Shared-Memory Profiler I/O Profiler

Visualization

Query

Analysis

Instrumented Binary

execution

Binary instrumentation

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation7

“Action Point” Binary Instrumentation

Symbolic Binary Instrumentation

Standardized Data Collection Libraries

Graphical Instrumentation, Visualization and Analysis

Automation

HPC Toolkit Software Stack

pSigma

HPM, …

PeekPerf

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation8

Action Point Binary Instrumentation

Basic ability to modify a binary executable so that the execution of the
program will be intercepted at given points and one or more associated
actions can be executed.

shalow: 0x7c0802a6 mflr r0
0x100003fc: 0x7d800026 mfcr r12
0x10000400: 0x48000781 bl .Ssavef28
0x10000404: 0x80620050 lwz r3,80(rtoc)
0x10000408: 0xbe41ffa8 stmw r18,-88(sp)
0x1000040c: 0x91810004 stw r12,4(sp)
0x10000410: 0x90010008 stw r0,8(sp)
0x10000414: 0x607f0000 ori r31,r3,0
0x10000418: 0x9421fed0 stwu sp,-304(sp)
0x1000041c: 0x48000791 bl .mpi_init
0x10000420: 0x80410014 lwz rtoc,20(sp)
0x10000424: 0x3bc00000 li r30,0
0x10000428: 0x83a20058 lwz r29,88(rtoc)
0x1000042c: 0x93c10044 stw r30,68(sp)
0x10000430: 0x38610044 addi r3,sp,68
0x10000434: 0x389d0008 addi r4,r29,8
0x10000438: 0x80a20050 lwz r5,80(rtoc)
0x1000043c: 0x48000799 bl .mpi_comm_rank

Execute Action 1

Execute Actions 2, 3, 4

Execute Actions 5, 6

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation9

Action Point Binary Instrumentation

Example: intercept all memory operations

shalow: 0x7c0802a6 mflr r0
0x100003fc: 0x7d800026 mfcr r12
0x10000400: 0x48000781 bl .Ssavef28
0x10000404: 0x80620050 lwz r3,80(rtoc)
0x10000408: 0xbe41ffa8 stmw r18,-88(sp)
0x1000040c: 0x91810004 stw r12,4(sp)
0x10000410: 0x90010008 stw r0,8(sp)
0x10000414: 0x607f0000 ori r31,r3,0
0x10000418: 0x9421fed0 stwu sp,-304(sp)
0x1000041c: 0x48000791 bl .mpi_init
0x10000420: 0x80410014 lwz rtoc,20(sp)
0x10000424: 0x3bc00000 li r30,0
0x10000428: 0x83a20058 lwz r29,88(rtoc)
0x1000042c: 0x93c10044 stw r30,68(sp)
0x10000430: 0x38610044 addi r3,sp,68
0x10000434: 0x389d0008 addi r4,r29,8
0x10000438: 0x80a20050 lwz r5,80(rtoc)
0x1000043c: 0x48000799 bl .mpi_comm_rank

Execute Action 1

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation10

Actions

Only two basic actions:
- Invoke a sequence of functions

- Activate/Deactivate the instrumentation

Action point = (position, [condition], action)

Position = [before | after | replace] instruction

Condition = IsLoad, IsStore, IsBranch, ExCount > N, …

Action = Activate | Deactivate | invoke FunctionList

FunctionList = (func1, arg1, …), (func2, arg1, …), (func3, arg1, …)

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation11

Action Point Binary Instrumentation

Action Point ListAction Point List

before 0x10000404 invoke f1
before 0x10000414 invoke f2
before * IsLoad invoke f3, loadAddr
….

Probe Library

a.out

a.out.inst

f1
f2
f2

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation12

Action Point Instrumentation Features

! Low-overhead instrumentation

! Support single-threaded and multiple-threaded applications

! Programming Language and Compiler Independent

! Fine-grained (individual instructions)

! Dynamically activate/deactivate through events or signals

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation13

Problems with Action Point Binary Instrumentation
– Not performance-oriented:

– When the probe is invoked, no information on the state of the
system or on the effect of the operation is provided.

– The description of the rules that should trigger the probe cannot
use performance metrics (“invoke the probe on every L1 miss”)

– Not symbolic:
– If a probe function is invoked on a memory operation, there is no

information about which data structure/function the mem op
refers to.

– The description of the rules that should trigger the probe cannot
use symbolic names in the source program (“invoke the probe
every time the array A is touched”)

DIFFICULT TO DEVELOP PERFORMANCE TOOLS

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation14

“Action Point” Binary Instrumentation

Symbolic Binary Instrumentation

HPC Toolkit Software Stack

pSigma

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation15

Symbolic Binary Instrumentation

• Instrumentation driven by directives, each specifying an event and the
corresponding action

• Events can use symbolic names and performance metrics

• An event is either a predicate on the current operation (eg. operation is a load,
or was an L1 miss) or a predicate on the state of the system (L1 miss count
exceeded a constant)

• Events can be combined using logical operators

• Events can be qualified by a context, if the event is to be considered only for
certain data structures/functions.

• Symbolic mapping engine translates symbolic commands to low-level instructions

• Builtin cache simulator allows the use of memory performance metrics in events

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation16

Examples: Symbolic Events
– on funcEntry in F do call myHandler

– on (Load for A) or (Store for A) do call myHandler

– on (ExInstructions == 1000) do call myHandler

– on L1Miss for A in F do call myHandler

– on L1Miss for A in F and (L1Misses for A in F > 1000) do call myHandler

activate/
deactivateProbe function

standardized event description interface

events

Runtime

during
execution

pSigma
Runtime

Lib

instrumented
program
execution

Instrumentation

pSigma Symb
Instrumenter

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation17

Action Point Binary Instrumentation

Symbolic Binary Instrumentation

Action Point ListAction Point List

before 0x10000404 invoke f1
before 0x10000414 invoke f2
before * IsLoad invoke f3, loadAddr
….

Probe Library

a.out

a.out.inst

f1
f2
f2

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation18

Action Point Binary InstrumentationSymbolic Binary
Instrumentation

Symbolic Binary Instrumentation

Action Point List
Action Point List

0x10000404
0x10000414
0x10000568
….

a.out

Probe
Library

inst

Symbolic Instr.

Description Flie

Symbolic Instr.

Description Flie

Probe Library

f1
f2
f2

a.out

Runtime
lib

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation19

“Action Point” Binary Instrumentation

Symbolic Binary Instrumentation

Standardized Data Collection Libraries

HPC Toolkit Software Stack

pSigma

HPM, …

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation20

Standardized Data Collection Library
! Standardized interface for probe libraries:

– Specify data collection points through pSigma symbolic language

– Output data in a standardized XML format which describes:
• Collected metrics as a tree
• Mapping of the metrics to the source code

m1

m2

m1.1

m1.2

m1.3

347 WRITE(*,*) "Entering CALC2..."
348
349 TDTS8 = TDT/8.D0
350 TDTSDX = TDT/DX
351 TDTSDY = TDT/DY
352
353 C SPEC removed CCMIC$ DO GLOBAL
354 DO 200 J=1,N
355 DO 200 I=1,M
356 UNEW(I+1,J) = UOLD(I+1,J)+
357 1
TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J)
358 2 +CV(I+1,J))-TDTSDX*(H(I+1,J)-H(I,J))
359 VNEW(I,J+1) = VOLD(I,J+1)-
TDTS8*(Z(I+1,J+1)+Z(I,J+1))
360 1 *(CU(I+1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J))
361 2 -TDTSDY*(H(I,J+1)-H(I,J))
362 PNEW(I,J) = POLD(I,J)-TDTSDX*(CU(I+1,J)-CU(I,J))
363 1 -TDTSDY*(CV(I,J+1)-CV(I,J))
364 200 CONTINUE

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation21

PeekPerf: Standardized Data Visualization

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation22

Action Point Binary
Instrumentation

Symbolic Binary
Instrumentation

Standardized Data Collection Library

Action Point
ListAction Point

List inst

Symbolic Instr.

Description Flie

Symbolic Instr.

Description Flie

Standardized
Data-Collection

Lib

a.out

Runtime
lib

Visualization

XML

Probe Library

f1
f2
f2

P
e
e
k
P
e
r
f

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation23

Example Standardized Data Collection Libraries: HPM

• Cycles
• Instructions
• Floating point instructions
• Integer instructions
• Load/stores
• Cache misses
• TLB misses
• Branch taken / not taken
• Branch mispredictions

• Useful derived metrics

IPC - instructions per cycle
Float point rate (Mflip/s)
Computation intensity
Instructions per load/store
Load/stores per cache miss
Cache hit rate
Loads per load miss
Stores per store miss
Loads per TLB miss
Branches mispredicted %

Hardware Counters:
• extra logic inserted in the processor to count specific events
• updated at every cycle
• low-overhead
• processor-specific

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation24

HPM Data Visualization

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation25

Example Standardized Data Collection Libraries: MP_Profiler

Profiling tool for MPI applications

– Implements wrappers around MPI calls using the PMPI interface
start timer
call pmpi equivalent function
stop timer

– Captures both “summary” and trace data for MPI calls with source
code traceback

– No changes to source code, but MUST compile with -g
– ~1.7 microsecond overhead per MPI call
– Does not synchronize MPI calls

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation26

MP_Profiler Data Visualization

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation27

Example Standardized Data Collection Libraries: SiGMA

– Memory profiler based on a simulator

– Control-Centric and Data-Centric

– Experiment with memory performance models

– Ask “what-if” questions regarding data and code rearrangements

– Provide feedback on design of new memory architectures

– Identify performance bottlenecks due to the memory hierarchy and
data layout

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation28

SiGMA Memory Profile:

– Execute functional cache simulation and provide memory profile
– IBM architectures prefetching implemented
– Write-Back/Write-Through caches, replacement policies etc

Provide counters such as hits, misses, cold misses for
each cache level
each function
each data structure
each data structure within each function

Output sorted by the SIGMA memtime:
SUM(LoadHits(i)*LoadLat(i) + StoreHits(i)*StoreLat(i)) +

#TLBmisses * Lat(TLBmiss)

memtime should track wall time for memory bound applications

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation29

SiGMA Data Visualization

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation30

“Action Point” Binary Instrumentation

Symbolic Binary Instrumentation

Standardized Data Collection Libraries

Graphical Instrumentation, Visualization and Analysis

HPC Toolkit Software Stack

pSigma

HPM, …

PeekPerf

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation31

PeekPerf GUI for Instrumentation

! Control instrumentation from PeekPerf: one complete framework for
performance analysis

! Operate on the source code but perform modifications on the binary

! Debugger-like interface

! Automatically display collected data

! Refine instrumentation (iterative tuning)

! Comparison between data and between multiple runs

! Graphics capabilities (tables, charts)

! Query language for “what-if” analysis

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation32

PeekPerf GUI for Instrumentation

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation33

Instrumentation
Visualization
Analysis

PeekPerf: Graphical Instrumentation, Visualization and Analysis

Action Point Binary
Instrumentation

Symbolic Binary
Instrumentation

Action Point
ListAction Point

List inst

Runtime
lib

Visualization

XML
Symb.
Descr.

Symb.
Descr.

LibnLib1

a.outsrc

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation34

HPC Toolkit for Productivity

! “End-to-End” Optimization of Application Performance-Tuning Cycle

Completely Binary Approach
Programmable and dynamic, yet without the need for costly and error-prone source code modification.

Data Centric Analysis (DCA)
Performance information is directly related to the application data structures.
Critical to understanding data movement and memory-related performance of shared memory

hierarchical systems intended for HPCS.

Alternate-Scenario Prediction (ASP)
Fast and automated path to testing effects of altering data structures and/or code structure, without

having to change any source code.
Examples:

– Data-Structure Layout
– Order of a parallel computation, scheduling of threads, etc.

Query language and what-if analysis

User-Controlled Automation (UCA)
Selective removal of programmer from tuning cycle
Reduces complexity of the system to the application developer.

Advanced Computing Technology Center

The IBM High Performance Computing Toolkit © 2007 IBM Corporation35

Summary:

• The IBM HPC Toolkit provides an integrated framework for performance
analysis

• Support iterative analysis and automation of the performance tuning process

• The standardized software layers make it easy to plug in new performance
analysis tools

• Operates on the binary and yet provide reports in terms of source-level
symbols

• Provides multiple layers that the user can exploit (from low-level
instrumentations to high-level performance analysis)

• Full source code traceback capability

• Dynamically activate/deactivate data collection and change what information
to collect

36

© 2002 IBM Corporation

Questions / Comments

